Hash Functions and Combinatorics on Words

Jan Legerský

jan.legersky@gmail.com

Theoretical Informatics GRoup FNSPE CTU in Prague

April 25, 2014

- 1 Hash Functions
 Applications
 Construction
 Attacks
- 2 Infinite words Properties
- 3 DitheringDitheringAttacksDither sequence

Applications Construction Attacks

Hash Functions

Applications Construction Attacks

Hash Functions

- Easy computable
 - Time $\mathcal{O}(N)$, memory $\mathcal{O}(1)$.

Applications Construction Attacks

Hash Functions

- Easy computable
 - Time $\mathcal{O}(N)$, memory $\mathcal{O}(1)$.
- Collision resistance
 - It is computationally infeasible to find two different messages M and M' such that f(M) = f(M').

Applications Construction Attacks

Hash Functions

- Easy computable
 - Time $\mathcal{O}(N)$, memory $\mathcal{O}(1)$.
- Collision resistance
 - It is computationally infeasible to find two different messages M and M' such that f(M) = f(M').
- Second preimage resistance
 - For given message M_{target} is computationally infeasible to find message M such that $f(M) = f(M_{\text{target}})$.

Hash Functions

- Easy computable
 - Time $\mathcal{O}(N)$, memory $\mathcal{O}(1)$.
- Collision resistance
 - It is computationally infeasible to find two different messages M and M' such that f(M) = f(M').
- Second preimage resistance
 - For given message M_{target} is computationally infeasible to find message M such that $f(M) = f(M_{\text{target}})$.
- Preimage resistance
 - For given hash h_{target} is computationally infeasible to find message M such that $f(M_{\text{target}}) = h_{\text{target}}$.

Applications Construction Attacks

Application

- Control of integrity
- Message authentication – HMAC
- Digital signatures
- Password verification
- File or data identifier
- Hash tables
- Pseudogenerators
- Key derivation

Applications Construction Attacks

Construction

Merkle-Damgård paradigm – using compression function $F:\{0,1\}^n \times \{0,1\}^m \to \{0,1\}^n$ iteratively.

Applications Construction Attacks

Construction

Merkle-Damgård paradigm – using compression function

 $F:\{0,1\}^n imes \{0,1\}^m o \{0,1\}^n$ iteratively.

To compute hash of the message M [5, 3]:

1 Pad the message *M* to fill *m*-bits blocks:

$$M_1 M_2 \dots M_{\ell-1} \underbrace{M'_{\ell}||1||00\dots 0||\mathsf{length}(M)}_{m \; \mathsf{bits}}.$$

Applications Construction Attacks

Construction

Merkle-Damgård paradigm – using compression function $F:\{0,1\}^n \times \{0,1\}^m \to \{0,1\}^n$ iteratively.

To compute hash of the message M [5, 3]:

lacktriangledown Pad the message M to fill m-bits blocks:

$$M_1 M_2 \dots M_{\ell-1} \underbrace{M'_{\ell}||1||00\dots 0||\mathsf{length}(M)}_{m \; \mathsf{bits}}.$$

2 Iterate ℓ -times compression function F:

$$h_0 = IV$$
,
 $h_i = F(h_{i-1}, M_i)$.

Applications Construction Attacks

Construction

Merkle-Damgård paradigm – using compression function $F:\{0,1\}^n \times \{0,1\}^m \to \{0,1\}^n$ iteratively.

To compute hash of the message M [5, 3]:

lacktriangledown Pad the message M to fill m-bits blocks:

$$M_1 M_2 \dots M_{\ell-1} \underbrace{M'_{\ell}||1||00\dots 0||\mathsf{length}(M)}_{m \; \mathsf{bits}}.$$

2 Iterate ℓ -times compression function F:

$$h_0 = IV$$
,
 $h_i = F(h_{i-1}, M_i)$.

3 Get digest:

$$f(M) := g(h_\ell)$$
.

Applications Construction Attacks

Applications Construction Attacks

Compression function

Theorem

If we know an attack against MD scheme, then we know an attack against compression function.

In other words, collision resistant compression function implies collision resistant hash function using MD scheme.

Davies-Meyer construction uses block cipher $E_k(x)$:

$$F(h, M) := E_M(h) \oplus h$$
.

The weakness is easy findable fixed points:

$$h = F(h, M) = E_M(h) \oplus h$$
$$0 = E_M(h)$$
$$h = E_M^{-1}(0).$$

Applications Construction Attacks

Concrete examples

"The quick brown fox jumps over the lazy dog"

- MD4: 1bee69a46ba811185c194762abaeae90
- MD5: 9e107d9d372bb6826bd81d3542a419d6
- SHA-1: 2fd4e1c67a2d28fced849ee1bb76e7391b93eb12
- SHA256: d7a8fbb307d7809469ca9abcb0082e 4f8d5651e46d3cdb762d02d0bf37c9e592
- Keccak256: 4d741b6f1eb29cb2a9b9911c82f56fa
 8d73b04959d3d9d222895df6c0b28aa15

Applications Construction Attacks

Attacks

- Against compression function
 - Dobbertin MD4
 - Wang, Klíma MD5
- Generic:
 - Collision attack birthday attack
 - Multicollision attack Joux
 - Second preimage attack expandable message, collision tree,...

Applications Construction Attacks

CONTRACT

At the price of **\$176,495** Alf Blowfish sells his house to Ann Bonidea.

CONTRACT

At the price of **\$276,495** Alf Blowfish sells his house to Ann Bonidea.

Figure: H. Dobbertin [2] presented algorithm for finding collisions of MD4, conference FSE 1996.

Applications Construction Attacks

Birthday paradox

How many people must be in a room to have probability 50% that there is a pair with same birthday?

Applications Construction Attacks

Birthday paradox

How many people must be in a room to have probability 50% that there is a pair with same birthday?

We have to pick I elements which have randomly N different values to get pair having same value with probability p.

Applications Construction Attacks

Birthday paradox

How many people must be in a room to have probability 50% that there is a pair with same birthday?

We have to pick I elements which have randomly N different values to get pair having same value with probability p.

$$I \doteq \sqrt{2\ln(\frac{1}{1-\rho})}\sqrt{N}$$

Applications Construction Attacks

Birthday paradox

How many people must be in a room to have probability 50% that there is a pair with same birthday?

We have to pick I elements which have randomly N different values to get pair having same value with probability p.

$$I \doteq \sqrt{2\ln(\frac{1}{1-p})}\sqrt{N}$$

So we can find collision of hash function with complexity $2^{\frac{n}{2}}$.

Applications Construction Attacks

Multicollision attack

We want to have k messages with the same hash.

Applications Construction Attacks

Multicollision attack

We want to have k messages with the same hash.

Ideal hash function: $(2^k!)^{\frac{1}{2^k}} \cdot 2^{\frac{n(2^k-1)}{2^k}}$ calls of compression function.

Applications Construction Attacks

Multicollision attack

We want to have k messages with the same hash.

Ideal hash function: $(2^k!)^{\frac{1}{2^k}} \cdot 2^{\frac{n(2^k-1)}{2^k}}$ calls of compression function.

Joux attack against MD scheme: only $k \cdot 2^{\frac{n}{2}}$ calls of compression function.

Second preimage attack with expandable message

Suppose message M_{target} of size 2^k blocks.

- 1 Find $2^{\frac{n}{2}}$ fixed points (h_i, M_{fix}) , i. e. $h_i = F(h_i, M_{fix})$.
- 2 Compute $2^{\frac{n}{2}}$ hashes $h'_{j} = f(IV, M_1)$.
- **3** Find collision between these two lists. Denote the colliding value h_{exp} .
- **4** Make an expandable message $M(\ell)$:

$$M(\ell):=M_1||M_{fix}^{\ell-1}|.$$

5 Find message M_{link} such that $F(h_{exp}, M_{link}) = \widetilde{h}_j$ for some $j \in \widehat{2^k}$, where \widetilde{h}_j are contexts of M_{target} .

Complexity of the attack is $2^{\frac{n}{2}+1} + 2^{n-k}$ calls of compression function instead of 2^n against ideal hash function.

Infinite words

Let $\mathcal{A} = \{a_1, a_2, \dots, a_k\}$ be the finite alphabet of letters. Then the sequence $\mathbf{d} = d_1 d_2 d_3 \cdots$, where $d_i \in \mathcal{A}$, is called infinite word over the alphabet \mathcal{A} .

Finite nonempty word w is factor of word \mathbf{d} , if there are words x and y such that $\mathbf{d} = xwy$.

We denote the set of all factors of the word **d** of lenght m by $\mathcal{L}_m(\mathbf{d}) = \{w | w \text{ factor } \mathbf{d}, |w| = m\}.$

Properties of infinite words

The word \mathbf{d} is square-free, if it contains no factor u = ww, where w is nonempty factor of \mathbf{d} .

Factor complexity $\mathcal{C}_{\mathbf{d}}(m):\mathbb{N}\to\mathbb{N}$ of the word \mathbf{d} is function:

$$C_{\mathbf{d}}(m) = \# \mathcal{L}_m(\mathbf{d}).$$

Dithering Attacks Dither sequence

Dithering

The improvement of second preimage resistance.

We add the letter d_i of infinite word **d** to input of compression function:

$$h_i = F(h_{i-1}, M_i, d_i)$$
.

$$IV = h_0 \xrightarrow{f} h_1 \xrightarrow{f} h_2 \xrightarrow{f} h_3 \xrightarrow{f} \dots \xrightarrow{h_{\ell-2}} h_{\ell-1} \xrightarrow{h_{\ell-1}} H_{\ell} \xrightarrow{f} h_{\ell} \xrightarrow{g} f(M)$$

Dithering Attacks Dither sequence

- Square-free word **d** disables attack using expandable message.
- The high-complexity word or the word over large alphabet makes more difficult the other attacks.

Attacks on the dithered hash functions

• Collision tree of depth /

•
$$4\sqrt{2\ln 2} \cdot \sqrt{I} \cdot 2^{\frac{n+l}{2}} + C_{\mathbf{d}}(I+1) \cdot 2^{n-k} + 2^{n-l}$$

Note: M_{target} has length 2^k blocks.

Collision tree attack

- The nodes of collision tree are marked by hashes, the edges by message blocks with the dither letter according to level of the tree.
- Every hash is colliding hash of its leaves and blocks in the edges.
- The root of collision tree is due to birthday paradox linked to the target message.
- Prefix of required length is linked to one of leaves.
- Complexity is $4\sqrt{2\ln 2} \cdot \sqrt{I} \cdot 2^{\frac{n+l}{2}} + \mathcal{C}_{\mathbf{d}}(I+1) \cdot 2^{n-k} + 2^{n-l}$ calls of compression function.

Dithering Attacks Dither sequence

Construction of dither sequence

Theorem

Let $\mathbf{u} = u_1 u_2 u_3 \cdots$ be the word with complexity $C_{\mathbf{u}}(m)$ over the alphabet \mathcal{A} , the word $\mathbf{v} = v_1 v_2 v_3 \cdots$ is square-free over the alphabet \mathcal{B} and $\mathcal{A} \cap \mathcal{B} = \emptyset$.

Then $\mathbf{u} = u_1 v_1 u_2 v_2 u_3 v_3 \cdots$ is square-free and it holds $C_{\mathbf{d}}(2m) \geq C_{\mathbf{u}}(m)$.

Dithering Attacks Dither sequence

We get the word \mathbf{u} with the exponential complexity $C_{\mathbf{u}}(m) = 2^m$ by concatenation of binary expansions of natural numbers:

$$\mathbf{u} = 11011100101110111 \cdots$$
.

The word \mathbf{v} is generated as follows:

We suppose morfism τ defined over the alphabet $\{A, B, C, D\}$ as

$$\tau(A) = AB$$
, $\tau(B) = CA$, $\tau(C) = CD$, $\tau(D) = AC$.

Morfism μ is applied on the fixed point $\tau^{\infty}(A)$:

$$\mu(A) = 4$$
, $\mu(B) = 3$, $\mu(C) = 2$, $\mu(D) = 3$.

The word $\mathbf{v} = \mu(\tau^{\infty}(A)) = 432423432342 \cdots$ is Thue's square-free word.

By shuffling \mathbf{u} and \mathbf{v} is formed square-free word

$$\mathbf{d} = 1413021412130403120314121 \cdots$$

over the alphabet $\{0,1,2,3,4\}$ with the complexity $\mathcal{C}_{\mathbf{d}}(m) \geq 2^{\frac{m}{2}}$. The complexity of the collision tree attack using dither sequence \mathbf{d} is

$$4\sqrt{2\ln 2} \cdot \sqrt{I} \cdot 2^{\frac{n+l}{2}} + \mathcal{C}_{\mathbf{d}}(I+1) \cdot 2^{n-k} + 2^{n-l} \ge$$

$$\ge 4\sqrt{2\ln 2} \cdot \sqrt{I} \cdot 2^{\frac{n+l}{2}} + 2^{\frac{l+1}{2}} \cdot 2^{n-k} + 2^{n-l}.$$

That means to increase k from $\frac{n}{3}$ to $\frac{n}{2}$ to keep the same complexity as the classical hash function.

Thanks for Your attention.

References I

- F. J. Brandenburg.
 Uniformly Growing k-th Power-Free Homomorphisms.

 Theoretical Computer Science, 23:69–82, 1983.
- H. Dobbertin.
 Cryptanalysis of MD4.

 Journal of Cryptology, 11(4):253–271, 1998.
- J. Kelsey and B. Schneier. Second Preimages on n-bit Hash Functions for Much Less than 2^n Work.

In Proceedings of the 24th annual international conference on Theory and Applications of Cryptographic Techniques, EUROCRYPT'05, pages 474–490, Berlin, Heidelberg, 2005. Springer-Verlag.

References II

- A. J. Menezes, P. C. van Oorschot, and S. A. Vanstone. Handbook of Applied Cryptography. CRC Press, 1996.
- R. L. Rivest.

 Abelian Square-free Dithering for Iterated Hash Functions.

 Presented at ECrypt Hash Function Workshop, June 21, 2005,

 Cracow, and at the Cryptographic Hash workshop, November 1, 2005, Gaithersburg, Maryland (August 2005), 2005.